$12 000; vapor cells are available for approximately $250 (rubidium stan-
dard cell) to $750 (lithium cell).

“M. G. Boshier, D. Berkeland, E. A. Hinds, and V. Sandoghdar, “External-
cavity frequency-stabilization of visible and infrared semiconductor lasers
for high-resolution spectroscopy,” Opt. Commun. 85, 355-359 (1991).

5J. C. Camparo, “The diode laser in atomic physics,” Cont. Phys. 26,
443477 (1985).

Spart T9215 diode laser, Thor Labs, P. O. Box 366, Newton, NJ 07860.
Price per laser is approximately $80.

R. D. Mathis Co., 2840 Gundry Ave., Long Beach, CA 90806.
8Newark Electronics, 12631 E. Emperial Hwy., Santa Fe Springs, CA
90670.

SPart 6-500 transformer, Signal Transformer, 500 Bayview Ave., Inwood,
NY 11696.

10part 3344-MSP-A4164 V-60 Turbopump Station with built-in pump and
MultiGage Controller, Varian Vacuum Products, 121 Hartwell Ave., Lex-
ington, MA 02173. The station price is approximately $6000.

11C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,”
Rev. Sci. Instrum. 62, 1-20 (1991).

2§, C. Harvey and C. J. Myatt, “External-cavity diode-laser using a
grazing-incidence diffraction grating,” Opt. Lett. 16, 910-912 (1991).

13part CP1.4-71-10L thermoelectric cooler, Melcor, 1040 Spruce St., Tren-
ton, NJ 08648.

14C. C. Bradley, J. Chen, and R. G. Hulet, “Instrumentation for the stable
operation of laser diodes,” Rev. Sci. Instrum. 61, 2097-2101 (1990).

BK. G. Libbrecht and J. L. Hall, “A low-noise high-speed diode-laser cur-

Understanding the chemical potential
G. Cook and R. H. Dickerson

rent controller,” Rev. Sci. Instrum. 64, 2133-2135 (1993).

16pZT Tube C-5500, 0.035 in. wall, 0.5 in. 0.D., 0.5 in. diam, Channel
Industries Inc., 839 Ward Dr., Santa Barbara, CA 93111.

1’p, Horowitz and W. Hill, The Art of Electronics, 2nd ed. (Cambridge
University Press, Cambridge, 1989), p. 169.

18A. Yariv, Optical Electronics, 4th ed. (Holt, Rinchart, and Winston).

19part 43 221 holographic grating, Edmund Scientific Co., 101 E. Gloucester
Pike, Barrington, NJ 08007.

2A. T. Schremer and C. L. Tang, “External-cavity semiconductor-laseer
with 1000 GHz continuous piezoelectric tuning range,” IEEE Photonics
Technol. Lett. 2, 3—5 (1990).

21part WA-2000 ‘Wavemeter-jr, Burleigh Instruments Inc., P.O. Box E, Fish-
ers, NY 11453. Price is approximately $6000.

2MDC Vacuoum Products Corp., 23842 Cabot Blvd., Hayward, CA 94545.

M. Kasevich, private communication.

2In the presence of moisture, lithium in a nitrogen atmosphere can react to
form the nitride. This is an exothermic reaction, which can run away,
ruining one’s lithium samples. We have seen this happen once, but typi-
cally we have no problems filling a leaky glove box with an overpressure
of nitrogen from the boil-off of a liquid nitrogen dewar. An argon atmo-
sphere could be used to eliminate this potential problem.

BR. Hulet (private communication).

%part E1AS3 cartridge heater with thermocouple, type J, style C, Watlow,
12001 Lackland Rd., St. Louis, MO 63146.

217, Lin, K. Shimizu, M. Zhan, F. Shimizu, and H. Takuma, “Laser cooling
and trapping of lithium,” Jpn. J. Appl. Phys. 30, 1.1324-11326 (1991).

Physics Department, California Polytechnic State University, San Luis Obispo, California 93407
(Received 11 August 1994; accepted 14 February 1995)

When teaching thermal physics and statistical mechanics the authors find a lot of confusion among
students about the meaning of the chemical potential . It seems particularly difficult for students
to develop a physical picture of what 4 is. In this paper some simple, pedagogical models are
developed to make the meaning of u clear, for a few selected systems. © 1995 American

Association of Physics Teachers.

I. INTRODUCTION

After several years of teaching thermal physics and statis-
tical mechanics to undergraduates, the authors find that there
is still a lot of confusion about the meaning of the “chemical
potential,” u. Typically, students learn the definition of gy, its
properties and consequences, and work problems using it,
but often still ask “But what is it?” In this paper we try to
clarify the meaning of u.

II. GENERAL DISCUSSION OF CHEMICAL
POTENTIAL

Consider a system which can exchange energy and par-
ticles with a reservoir, and the volume of which can change.
Energy acquired by the system, through heating, increases its
internal energy, U, by TdS, where T is the temperature of the
system, and S is the entropy of the system. If the system
expands by volume dV at pressure p, the work done by the
system is pdV. If the system gains dN particles (all of one
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single type), then U increases by wdN, where u is the
chemical potential. The change in the internal energy is then

dU=TdS~pdV+ udN. 1)

This relation is commonly called the thermodynamic iden-
tity, valid for infinitesimal, reversible processes.
It follows that

oU
ey EAZ (2)

We would like to look at what Eq. (2) tells us for some
simple systems.

A. A system of distinguishable, classical particles

Consider a simple, idealized system. Suppose the single
particle energy eigenvalues are quantized in integer multiples
of energy ¢, as shown in Fig. 1. In general, € will depend on
the volume, V, of the system, but we will insist on Holding V
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Fig. 1. Single particle energy levels for a simple system.

constant in this example. We assume that the energy eigen-
states are nondegenerate. The system is like that of a collec-
tion of simple harmonic oscillators, but with the zero of the
single particle energy scale shifted.

Let two distinguishable particles, labeled R and B, make
up this system, and assume initially the total energy U=2e.
How many microstates are available? We could have

R B

2€ 0

0 2¢e
€ €

showing that there are three microstates. The entropy of a
system can be defined in terms of the Boltzmann constant,
multiplied by the logarithm of the number of microstates
available, so the entropy for this system is given by

S=klng, 3

where £ is the Boltzmann constant, and g is the total number
of microstates available. Hence, for the system being consid-
ered, S=k In 3.

Let the volume of the system remain fixed, but consider
adding another distinguishable particle, labeled W, with zero
energy, so that the total energy is still U=2e. We list the
available microstates

R B W
2€ 0 0
0 2€ 0
0 0 2€e
€ € 0
€ 0 €
0 € €.

The entropy, by Eq. (3), has increased to S=k in 6.

So what is the chemical potential? According to Eq. (2), it
is calculated as the change in internal energy of the system,
when 1 more particle is added, while holding the volume and
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Fig. 2. Variation with temperature of the chemical potential of an ideal
Fermi gas, in terms of the Fermi energy, ;.

the entropy constant. The only way this can be done for our
simple system is to add the W particle with energy —e, or,
physically, to add the particle while allowing the internal
energy of the system to decrease by e. This makes the total
energy U= e, and the available microstates

R B W
€ 0 0
0 € 0
0 0 €.

Thus the entropy remains constant at S=k In 3. So, since
AU=—g¢, Eq. (2) gives

H=—¢c
The negative sign in the equation above simply indicates that

the system’s energy must decrease as a particle is added, so
that the entropy remains constant.

B. Ideal gas

It is standard! in statistical physics to calculate the parti-
tion function for an ideal gas, and then to use identities in-
volving derivatives of the logarithm of the partition function
to determine U, p, S, i, and so on. This method is explained
in detail in many books on statistical mechanics.! For an
ideal monatomic gas, at temperature T, high enough for the
gas to behave classically, in a box of volume V, the results
for the entropy and chemical potential are as fol-

lows:
Vv 3 mU 5
S=Nk[ln gﬁ+zln W]-*-E} 4)
and
V| mkT \*?
pu=—kT In| gﬁ(mj) }, 3)

where g is the degeneracy of the particles: g=2s+1 for
example, for particles of spin s.

Equation (4) is known as the Sackur-Tetrode equation.
The internal energy is given by

U= 3NkT, (6)

as discussed in many texts.!
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Fig. 3. Single particle energy states are filled up to the Fermi level. Spacing
of energy levels shown is schematic only.

Students seem to find Eq. (5) surprising. One question
they always ask is “Why is it negative?” Actually, in the
classical limit, the quantity in square brackets, in Eq. (5), is
large, much greater than 1, making u a negative number.
This is so whenever T is large, and the volume per particle,
VIN, is large compared to the cube of the thermal de Broglie
wavelength, A =h/p, where p?=3mkT (which follows from
the equipartition theorem). In fact, u must be negative, be-
cause in order to add a particle, while keeping the entropy
and volume constant, the particle must carry “negative
energy”’—or rather, it must be added while the internal en-
ergy of the ideal gas is allowed to decrease, by cooling. We
demonstrate this by using Eqs. (4) and (6) explicitly.

Let us add a single particle to the system, so that
N—N-—1. Let the particle entry to the system involve a
change in energy, u, of U, so that the internal energy U—U
+ w. Then the entropy becomes

PN v],3 [ mutws | 5
§'=WHDK I gl g Y3 M e nymz) T2 O

We wish to find the value of u that makes S in Eq. (4) and S’
in Eq. (7) equal, in keeping with Eq. (2). In the classical limit
N is large. We use the approximations 1/N<1, and |u|<U,
and expand the logarithms in Eq. (7) to first order. After
some algebra (see Appendix A for more detail), we see that
the value of u that makes the entropy S’ =S is precisely that
given by Eq. (5). Stated differently, adding a particle to the
ideal gas would cause the number of accessible microstates,
and hence the entropy, to increase, unless at the same time U
is forced to decrease. That is, the only way to hold the en-
tropy of the system constant, is to require U to decrease,
which suppresses the number of microstates. Hence, u is
negative. Or, physically, if you wish to add a particle while
holding S constant, the internal energy must be forced to
decrease, by cooling the system.

739 Am. J. Phys., Vol. 63, No. 8, August 1995

wWkTo ‘r
21

*1t

-1t T/Ty:

Fig. 4. Variation with temperature of the chemical potential of an ideal Bose
gas. T,=(3.312%/mk)[N/(2s+1)V]??, where s is the spin of the boson
and m is the mass of a single particle. T, is the temperature at which all
bosons should be in excited states, leaving the single particle ground state
essentially empty.

C. Ideal Fermi gas (Ref. 2)

We have demonstrated that for a classical gas, £<0. In the
classical limit, i.e., at high temperature and large N, both
Fermi gases and Bose gases should behave classically; in
particular, their chemical potentials should be negative. Hav-
ing made this point we look at the form of u for an ideal
Fermi gas, shown in Fig. 2.

Since this form is well documented in many texts,! we
display only a sketch of it here. At high temperature the form
of u does indeed approach that of an ideal classical gas. But
we sec that >0 at low temperature. Why?

At T=0 all the low lying single-particle states are filled,
up to the Fermi energy, €, in accordance with the Pauli
exclusion principle. Each state is shown in Fig. 3, filled with
two spin 1/2 fermions, one with spin up, and one with spin
down. All states above the Fermi level are empty. There is
only one microstate available to the system, and the entropy
$=0, in accordance with the third law of thermodynamics.

Let us now add another fermion, at 7=0. It must go into a
single particle state at, or just above, the Fermi level. So the
energy increase of the system is AU=¢;, and thus

M=E€E f

Note that this is a positive quantity. There is still only one
available microstate, so the entropy of the Fermi gas is still
zero. Equation (2) shows that this energy really is the chemi-
cal potential for this zero temperature Fermi gas.

As the temperature rises, the total internal energy of the
system increases, and some of the fermions begin to occupy
excited states. The entropy of the system also increases, as
the temperature rises, because more microstates become
available. Imagine the gas at a very low, but nonzero, tem-
perature, and consider the effect of adding one more particle.
To satisfy Eq. (2), the entropy of the system must not in-
crease when the particle is added. The new particle must go
into one of the states close to the energy level ¢, since
fermions leave these states first, when excited into higher
states. In fact, the new particle must go into a low lying,
vacant single particle state, which will be a little below e, .
The gas must also be cooled a little, to avoid increasing the
number of accessible microstates. (Usually, adding a particle
to a system causes an increase in the number of accessible
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microstates, even if the internal energy of the system remains
constant. The reason is that the number of ways of distribut-
ing the total energy, among the particles, increases. This was
shown in Sec. Il A). The change in internal energy of the
Fermi gas, AU= u, must therefore be positive, but a little
smaller than ;.

At slightly higher temperatures more fermions are excited
into higher single particle states. More of the low lying
single particle states become vacant, and the energy of the
lowest lying single particle states gets smaller. To add a new
particle without increasing the entropy requires the new par-
ticle to go into a low lying single particle state, considerably
below €7, while, once again, cooling the gas slightly, to
avoid an increase in the number of microstates, and there-
fore, entropy; hence AU=y will be well below €;. The
chemical potential, u, therefore decreases, from € at T=0,
to smaller and smaller values, until x=0, just below the
temperature T,= €s/k, at which even the single particle
ground state is unlikely to be occupied.

After this point, u becomes negative. If a new particle is
added to the system, internal energy must decrease, to com-
ply with the constraint spelled out in Eq. (2), that the entropy
remains constant.

As the temperature rises, the gas eventually begins to
mimic classical behavior: the chemical potential decreases
and becomes increasingly negative. In this way, the behavior
of w in Fig. 2 can be completely understood.

D. Ideal Bose gas (Refs. 3 and 4)

A sketch of the chemical potential for an ideal Bose gas is
displayed in Fig. 4. The energy scale has been chosen so that
the single particle ground state of the system has energy
equal to zero. The derivation of u as a function of tempera-
ture, T, is discussed in Appendix B.

At high temperature u behaves classically, but at low tem-
perature u—0. Why?

The answer to this question is easy. As T—0 the bosons
begin to form a “condensate,” that is, they all go into the
lowest energy eigenstate available, with e=0. Bosons do not
obey any exclusion principle, so there is nothing to prevent
the condensation. At T=0 they are all in the ground state,
with zero energy. There is only one available microstate, so
S=k In 1=0. If another boson is added to the system, while
keeping the entropy constant, it must have zero energy, and
go into the ground state too, so AU=0, AS=0, and hence
u1=0.

Consider the Bose gas at very low, but finite, temperature.
The internal energy of the gas has increased, and a few
bosons are in excited states. Most are still in the ground state.
The entropy of the gas has also increased, because the num-
ber of microstates available has increased. Consider adding
one more particle. For the purpose of calculating u, Eq. (2)
requires that the entropy remain constant. The new particle
could be added into the ground state, with zero energy. The
number of microstates available to the system probably in-
creases since the number of ways of distributing the given
internal energy of the system among the particles present,
usually increases when an extra particle is added. At very
low temperatures, this increase in the number of microstates
is a very small number. Therefore, the entropy of the system
would also increase by a small amount. The internal energy
of the gas should be allowed to decrease slightly, by cooling
the system, so the number of available microstates does not
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increase, and the entropy is held fixed. Therefore, the chemi-
cal potential is very small in magnitude, at low temperature,
and negative.

As the temperature increases, the net internal energy of the
Bose system increases. More particles are in excited states,
and fewer particles lie in the ground state. If one more, extra,
particle is added, it should still go into the ground state with
zero energy. Nevertheless, the number of microstates avail-
able, and hence the entropy, increases, because the number of
ways of distributing the internal energy among the available
particles increases. u must be negative to compensate for
this effect.

The chemical potential of the Bose gas remains close to
zero, and negative, until the temperature T, is reached, at
which point the occupancy of the single particle ground state
becomes vanishingly small. T, is called the Bose tempera-
ture, or the Bose—Einstein condensation temperature; see
Appendix B. The occupancy of the ground state is micro-
scopic at this temperature, and above it (meaning that there
may be a few bosons in the ground state, but this number is
tiny compared to the number of bosons in the system). T, is
given by

_3.31ﬁ2( N

2/3
T,= mk (2s+1)V) ’ ®)

where s is the spin of the bosons, V is the volume, and N is
the total number of bosons in the system. Equation (8) is
obtained* by setting the number of particles in excited states
equal (essentially) to the total number in the system. See
Appendix B for details.

At temperatures higher than T, the condensate in the
ground state is no longer present; if an extra particle is added
to the system, even into the ground state, the entropy in-
creases by a large amount because the number of ways of
distributing the internal energy between the particles is large,
resulting in many more microstates available. The system
must be cooled to keep the entropy from increasing. At tem-
peratures higher than T, this effect predominates. When the
condensate has evaporated, u becomes rapidly more nega-
tive, eventually mimicking ideal gas behavior.

To understand the behavior of u shown in Fig. 4 it is
crucial to understand the effect the condensation in the
ground state has on the system.

To see how this works the reader is invited to do a simple
exercise, which demonstrates how u stays close to zero at
low temperature, below T, and then becomes rapidly more
negative. Consider a system of bosons in which the single
particle energy eigenvalues are equally spaced, as shown in
Fig. 1, with single particle ground state energy equal to zero
(this is a simpler system than the Bose gas, but it shares
some of the properties of the gas). Let the number of bosons
in the system be N, and suppose the temperature is 7=0. At
zero temperature there is only one microstate available to the
system; U=0 and $=0. Consider adding another particle.
Add it into the ground state. AU=0 and AS=0, so u=0.

Start with N=2. Assume the temperature has increased, so
the total internal energy of the system is €. $=0 in this case,
also; only one microstate is available. Consider adding an-
other particle. Put it in the ground state making AU=0.
There are no new microstates, so AS=0. Hence, u=0, still.

Assume N=2, but the temperature has again increased,
consistent with U= 2 €. The number of available microstates
has increased to 2. Consider adding one more particle. Add it
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to the ground state with zero energy. Still, the number of
available microstates remains constant at two. So u=0, still.

Keep N=2, but allow the temperature to increase, consis-
tent with U=3e. There are only two microstates available
and S=k In 2. Add one more particle with zero energy, keep-
ing U=3 €. Suddenly, the number of microstates available to
the system has increased, and 4 must begin to go negative.

u begins to decrease significantly from zero, only when
the temperature increases enough (i.e., above T),) to make the
probability of finding the ground state occupied depart sig-
nificantly from 1.

Repeat this example for N=3, 4, 5, ... You will see that as
N increases, T}, also increases; u stays close to zero until
higher and higher temperatures are reached (consistent with
higher and higher values of the internal energy of the gas, U)
as in Eq. (8). At temperatures higher than T,, x becomes
rapidly more negative.

This simple example demonstrates the behavior of a Bose
system.

E. Photon gas (Refs. 5 and 6)

Photons are bosons with a unique property. The chemical
potential of a photon gas in equlhbrlum ina Volume V, and
at temperature, T, is formally given by B= =07

The physical reason for setting x=0 is that the number of
photons in the volume cannot be arbitrary; rather, the number
of photons is constantly, and automatically, being adjusted so
that the photon gas is in thermal equilibrium with the con-
stant temperature walls of the container. That is, the con-
tainer walls constantly absorb and re-emit photons. Even a
gas of photons far out in space does not contain a fixed
number of photons, since photons can be annihilated or cre-
ated in collisions (although the scattering cross section for
this process is very small, and photons would have to be
annihilated or created in pairs to conserve charge
conjugation.”) Therefore, when writing the thermodynamic
identity for a photon gas the term pdN, in Eq. (1), should be
omitted since N cannot be held fixed anyway. This is for-
mally consistent with setting x=0.

Further, it is easy to see why u should be set equal to 0 by
considering distributions. Consider a single photon state of
energy €. Suppose the photon gas is in thermal equilibrium at
temperature T, and that it has chemical potential x. Photons
are spin-1 (in units of %) bosons, and should therefore obey
Bose—Einstein statistics. The average occupancy of the state
of energy ¢ is therefore given by®

1
(n(€)= —ge=mr—7>
where B=1/kT (k is the Boltzmann constant).
This formula is valid for any Bose system. If we now set
u=0, we get

(n(€)=—pe—7
which is the standard form for the Planck distribution.®
All thermodynamic quantities can be derived from this equa-
tion for the average occupancy of a single photon state of
energy e.

For example, the total internal energy of a Bose—Einstein
gas is
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v= [ en@ppiee= | Die)de
=1 e€(n(e ede= | ——omr 7>

0 o [ FT—1]
where D(€)de is the density of states factor, that is, the
number of single particle states with energy between € and
etde.

We set =0, and use the density of states factor for a
photon gas in a box, D(w)dw=Vw? dw/7*c®, where a
single photon of angular frequency w has energy e=fw. We
get

= fwhw<n(w)>D(w)dw
0
fho’dw

V ©
w3 f o [exp(Aw/kT)—1]’

which is the correct expression for the total energy of a pho-
ton gas in a box. This integral can be done analytically, of
course. The result is the familiar one for blackbody radiation,

8wkt .
U=Vitsias) T

Therefore, the photon gas corresponds to a Bose gas for
which =0,

APPENDIX A

We show here that for an ideal gas, setting Eq. (7) and (4)
equal and solving for u does, indeed, produce Eq. (5) for the
chemical potential. With the spin degeneracy factor
g=2s5+1 set to 1 for simplicity, Eq. (7) gives
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and drop all terms of order x/U and 1/N in the expression
for $'—S. This gives
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—+thh =3 .

2U N\3N~th

Setting S’ —S=~0 and solving for u gives the result
V( mkT )3/ 2

S’—S%k[

m=—kT In

2

N\2mh?

where we used U=3NkT/2 for a monatomic ideal gas. This
result for u is Eq. (5).

APPENDIX B (See Refs. 4 and 6)

For a Bose gas the average occupancy of a single particle
state of energy e, at temperature T, is

1
(n(€))= g7

where B=1/kT.

We choose the zero of the energy scale at the single par-
ticle ground state, so e=0 for that state.

The total number of particles, N, in the system is

N=2 (n(e)).

In the continuum limit the summation becomes an integral
over the density of states. For a Bose gas of nonrelativistic
particles, mass m and spin s, the density of states is

(2s+1)V[2m\3? 2
D(E)=T zz— €',

Hence, the number of particles in excited states is given by

Vo= [ “(noppierde.

Note that the ground state has é=0, so the occupancy of
the ground state is not included in the integral above, since
D(€)=0 at e=0. Hence, the equation above gives only the
number of bosons in excited states. The number of bosons in
the ground state must be dealt with separately.® The number
in the ground state is

1
(n(O))=(2s+ 1);‘_@71_—1

Let the total number of particles in the system be N. Then
(n(0))+Nex=N,

or
1 vV [2m]? (= 1 2
Qs+)| =y T 12| 77| ), sFew_qe de

=N.

This equation can be solved numerically for u at each tem-
perature T. The result is the graph shown in Fig. 4.

The temperature T, is reached when N ~N. In other
words, almost all bosons are in excited states, leaving the
occupancy of the ground state vanishingly small. T, is given
by

N 2/3

2s+1)V

3.31%2
Ty= mk
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WRITERS AND LECTURERS

We should not blame young scientists for adopting learned journalese. They are simply follow-
ing the protocol established and maintained by an unconscious conspiracy of research supervisors
and editors who, in turn, learnt these dreadful habits earlier in their careers. What is surprising is
that few scientists stop to reflect on what they are doing. Tedious, clotted syntax is thus quite
different from other horrors of peer-group communication such as unreadable slides and over-
heads. Lecturers who announce ““You won’t be able to see this but ...”” do know that they are doing
something silly. Writers and speakers or learned journalese, by contrast, have no shame. When did
you last hear or read the apology: “I don’t like saying things in this way but I feel obliged to ...””?

Bernard Dixon, “Plain words, please,” New Scientist 137 (1865), 39 (20 March 1993).
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